Forms Modulator

The Forms Modulator scans the shape of 3d objects made from phosphorescent clay on a rotating disc. Proximity sensors transmit the irregularities of the shapes which then modulate the device’s internal synthesizers, effects, and samplers.

The device also serves as a master control for my robotic instruments which algorithmically improvise percussion and noise alongside.

Stepper Rattle

2017

I love rattles because, with their loose mechanical properties, they are never exactly on the beat. They can produce natural rustling sounds or white noise to wash over rhythmic and harmonic sections of music. Rattles are an important part of many rituals, dances, and performances where the performer’s movements, the visual design of the instruments, and the sounds that they produce are all interconnected. I chose to continue in that combined media tradition by attaching a closed-circuit camera to the instrument for live performances to project its movements while it produces sound.

For over twenty years, I have worked really hard to make robotic instruments that could be programmed precisely with limited latency. The SR plays by a different set of rules and is completely off the (MIDI) grid. It moves in and out of timed tempos and exploits the complex behavior and sounds produced by a stepper motor.

Unlike most motors that have one coil, the stepper has at least four. Instead of a single supply of DC to one coil, it is controlled by circuitry that creates a sequence of pulses that turn specific coils on and off to create steps of very precise forward and reverse moments. It emits interesting tones as it is modulated by the circuitry. I realized the potential along with its ability to produce mechanical percussion.

The guts of the Stepper Rattle contain 3D printer driver circuits and a microcontroller. There are two outputs from two contact mics. One mic is attached directly to the motor picking up its synthesizer-like tones from its oscillating coils. One mic is mounted to the soundboard that the mallet beats upon. Each mic has a separate volume knob. A stepper can behave in many different ways depending on the pitch that you feed into its driver circuit. There is a knob that controls tempo (the range of its beater’s motion) and another that controls its overall pitch. The IR sensor tells its program to switch direction after it smacks the soundboard.

The pitch knob combined with a toggle and a tempo knob affects the stepper’s full range of behavior and allows the performer to quickly switch between modes from drone-rhythm to bleeps to very fast metal-like percussion to nervous squealing. I am still discovering new ways to manipulate its sounds and movements each time I perform with it.

Classification: Percussion, Electrophone

The Tine Organ

2015

The Tine Organ BackThe Tine Organ Close Up of Tines

The “Tine Organ” is a chromatic organ sounded by an array of thin vertical tines, each coupled with a small MIDI-controlled electromagnet. As the magnet pulses with modulation at a specific frequency, the pull and release from the magnets cause the tines to resonate continuously with a pipe organ-like timbre – perhaps like bells played with a bow. The Tine Organ is capable of producing 20 chromatic notes in full polyphony starting at middle C and can be used as an attachment to a standard keyboard or DAW. The body of the instrument is made out of mahogany and bubinga and houses the soundboard as well as the mini microcontroller responsible for receiving the MIDI and regulating the software oscillators sending voltage to the magnets.

Classification: Lamellophone, Electronophone

Synthopia
Hackaday

Magnetic Membrane Cello

2015 – 2016 (See The Magnetosphere )

Red Magnetic Membrane Cello

Dual Magnetic Membrane Cello

Magnetically Actuated Membranophone

Magnetic Membrane Cello Board

Magnetically resonated membranophones are not struck or bowed. Instead, they can be continually excited by an internal MIDI-controlled electromagnet. The tin membrane resonates to a spectrum of frequencies. Because membranophones usually have an uneven frequency response, the firmware utilizes a varied PWM square wave to compensate for dead spots and hot spots in the chromatic scale. Volume control and microtonal intervals can be achieved as they receive MIDI CC messages and translate them to PWM and frequency values.

The tin drum is tightly fixed to the soundboard with a soundpost wedged between the back of the tin and the instrument’s backplate to function like a second soundboard (similar to a cello). The intention is to amplify the front and back of the tin by encasing it in a larger box adding resonance and pushing more air to produce louder low frequencies.

Classification: Memebranophone, Electronophone

eViol

2015

eViol3eViol2
Viols are related to guitars and lutes utilizing tied on frets and horsehair bows. My version incorporates electromagnetic sustainers. The frets are etched from a PCB board and are flat. They act as switches when the string is pressed down. When contact is made, a frequency matching the note of the string is pulsed through the corresponding magnet (similar to the Tine Organ above). The neck is maple and the body is a gourd with a mahogany soundboard.

Classification: Chordophone, Electronophone

eGuitar

2013

Seven string eGuitareGuitar close up of electromagnets and electronics
My seven-string guitar has feedback sustainers on the outer strings. The top string has a slightly different type of sustainer from the bottom due to its string thickness. The body is hand-carved from mahogany and the neck is a maple Stratocaster replacement neck.

Classification: Chordophone, Electronophone, Electrophone

Electric Lamellophone

2013

Electric Thumb PianoElectric Thumb Piano Side ViewElectric Thumb Piano Prongs and PickupsNot all of my invented instruments come from the same conceptual space. Some are produced to address the question “What kind of new performance or sound can I make?” and some might be developed addressing the question “What kind of big and complex sounds can I get from a small instrument because I already have too much to transport to my next performance?”.

The initial design challenge for this instrument that I proposed to myself was to make a piano-like instrument that can produce several deep bass tones, arpeggios, and chords. I wanted something like a Fender-Rhodes the size of a shoebox. My electric lamellophone is unique in that it has a separate pickup for each prong more like an electric piano than the single pickup version most builders produce. Each note reveals its full clarity and low-end response. The note layout is isomorphic similar to the Honer Guitarete.

Classification: Lamellophone, Electrophone

The Sympathetic Stringboard

1997

Prepared Guitar String InstrumentThe “String Board” fell off the moving truck on the way to Brooklyn in 2005. I salvaged the hardware and I will probably rebuild it or make something similar someday.

The main objective was to make an acoustic-electric inspired by the modular synth because of the way that each module could affect other modules. When I applied that concept to the instrument, the notion of “sympathetic tones” became the link between all of the modules on the board. Sympathetic in acoustic instrument design defines instruments with strings, tines, or membranes that resonate through a separate moving part that is connected to a soundboard or bridge. (I.E. The drumhead on a banjo is sympathetic and offers a range of resonant frequencies that make it sound a particular way). When a moving part like a string being plucked reaches the fundamental frequency of a nearby sympathetic part, the sympathetic part will be sonically excited as well. Each module has an electromagnetic pickup, including the DC motor-powered hurdy-gurdy in the front, the tines in the middle, and the strings suspended above from the 12-inch bridge.

Classification: Lamellophone, Chordophone, Electrophone

Amplified Programmable Music Box

2000

mb_4mb_3Homemade Discs for Modified Fisher Price Music Box
My modified Fisher Price music box is designed to play back interchangeable discs. In the hands of a hardware hacker, it becomes a very crudely programmable device as you can make your discs out of CDs that fit perfectly on the turntable. I made several variations utilizing plastic bits, glue gun blobs, epoxy, felt, and wood. Most have been lost over the years but a few remain. These days, I can laser-cut my own very easily.

The other modification to the MB includes a magnetic pickup that I embedded under the tines. I happened to have saved one from an old spring reverb that works quite well. I added a contact mic to the plastic membrane that the tines are coupled to internally. This provides two different sound sources that can be combined or toggled at its output.

Classification: Lamellophone, Electrophone